Axis–angle representationIn mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction (geometry) of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained.
Mouvement de rotationLa rotation ou mouvement de rotation est l'un des deux mouvements simples fondamentaux des solides, avec le mouvement rectiligne. En génie mécanique, il correspond au mouvement d'une pièce en liaison pivot par rapport à une autre. La notion de mouvement circulaire est une notion de cinématique du point : on décrit la position d'un point dans le plan. La rotation est une notion de cinématique du solide : on décrit l'orientation d'un solide dans l'espace. L'étude du mouvement de rotation est la base de la méthode du centre instantané de rotation (CIR).
Rotation formalisms in three dimensionsIn geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
Vitesse angulaireEn mécanique, la ou est une grandeur physique qui représente le taux de variation d'un angle par rapport au temps. C'est l'analogue de la vitesse de translation pour un mouvement de rotation. La vitesse angulaire est définie comme la dérivée par rapport au temps de la position angulaire de l'objet en rotation : Si on dérive une nouvelle fois la vitesse angulaire, on obtient l'accélération angulaire.
Orientation dans l'espaceL'orientation d'un objet dans l'espace est une partie de la description de la façon dont un objet est placé dans l'espace. Cette orientation est relative et ne peut être décrite que par rapport à une orientation de référence ; l'orientation est alors la rotation imaginaire que l'objet devrait subir pour être placé de la même façon que la référence. Une rotation n'est pas en général suffisante pour retrouver le placement de référence et il est le plus souvent nécessaire de faire subir une translation à l'objet, ce qui correspond à la position de l'objet dans l'espace.
Rigid body dynamicsIn the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.
Modèle du solide indéformableLe modèle du solide indéformable est un modèle de solide fréquemment utilisé en mécanique des systèmes de points matériels. Il s'agit d'une idéalisation de la notion usuelle de corps (à l'état) solide, considéré comme absolument rigide, et négligeant toute déformation. Le solide indéformable est un modèle utilisé en mécanique pour décrire le comportement d'un corps (objet, pièce). Comme son nom l'indique, on considère qu'au cours du temps la distance entre deux points donnés ne varie pas.
TorseurUn torseur est un outil mathématique utilisé principalement en mécanique du solide indéformable, pour décrire les mouvements des solides et les actions mécaniques qu'ils subissent de la part d'un environnement extérieur. Son nom fait référence à la forme des lignes de champ du champ de vecteurs correspondant, en forme de torsade. Un certain nombre de vecteurs utilisés en mécanique sont des moments : moment d'une force, moment cinétique, moment dynamique.
Angles d'EulerEn mécanique et en mathématiques, les angles d'Euler sont des angles introduits par Leonhard Euler (1707-1783) pour décrire l'orientation d'un solide ou celle d'un référentiel par rapport à un trièdre cartésien de référence. Au nombre de trois, ils sont appelés angle de précession, de nutation et de rotation propre, les deux premiers pouvant être vus comme une généralisation des deux angles des coordonnées sphériques. Le mouvement d'un solide par rapport à un référentiel (un avion dans l'air, un sous-marin dans l'eau, des skis sur une pente.
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.