A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used. Glow discharges are used as a source of light in devices such as neon lights, cold cathode fluorescent lamps and plasma-screen televisions. Analyzing the light produced with spectroscopy can reveal information about the atomic interactions in the gas, so glow discharges are used in plasma physics and analytical chemistry. They are also used in the surface treatment technique called sputtering. Conduction in a gas requires charge carriers, which can be either electrons or ions. Charge carriers come from ionizing some of the gas molecules. In terms of current flow, glow discharge falls between dark discharge and arc discharge. In a dark discharge, the gas is ionized (the carriers are generated) by a radiation source such as ultraviolet light or Cosmic rays. At higher voltages across the anode and cathode, the freed carriers can gain enough energy so that additional carriers are freed during collisions; the process is a Townsend avalanche or multiplication. In a glow discharge, the carrier generation process reaches a point where the average electron leaving the cathode allows another electron to leave the cathode. For example, the average electron may cause dozens of ionizing collisions via the Townsend avalanche; the resulting positive ions head toward the cathode, and a fraction of those that cause collisions with the cathode will dislodge an electron by secondary emission. In an arc discharge, electrons leave the cathode by thermionic emission and field emission, and the gas is ionized by thermal means. Below the breakdown voltage there is little to no glow and the electric field is uniform. When the electric field increases enough to cause ionization, the Townsend discharge starts.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (18)
ENV-424: Water resources engineering
Water resources engineering designs systems to control the quantity, quality, timing, and distribution of water to support human demands and the needs of the environment.
ENV-221: Hydrology for engineers
This is an introductory course to key concepts and methods in physical and engineering hydrology.
PHYS-452: Radiation detection
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
Afficher plus
Concepts associés (18)
État plasma
thumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.
Spectroscopie atomique
La spectroscopie atomique est une méthode de spectroscopie dont le but est d'analyser quantitativement ou qualitativement environ 70 éléments (métaux, métalloïdes et non-métaux). Il existe plusieurs grandes familles de spectroscopie atomique : la spectroscopie de masse atomique, la spectroscopie optique atomique et la spectroscopie des rayons X. L'atomisation est la dissociation d’une espèce chimique en atomes libres. La spectroscopie de masse atomique et la spectroscopie optique atomique ont besoin d’une étape d’atomisation de l’échantillon pour permettre son analyse.
Ion source
An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines. Electron ionization Electron ionization is widely used in mass spectrometry, particularly for organic molecules. The gas phase reaction producing electron ionization is M{} + e^- -> M^{+\bullet}{} + 2e^- where M is the atom or molecule being ionized, e^- is the electron, and M^{+\bullet} is the resulting ion.
Afficher plus
MOOCs associés (7)
Plasma Physics and Applications [retired]
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics and Applications
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.