thumb|Représentation du graphe de la fonction .
Le graphe d'une fonction f de E dans F est le sous-ensemble G de E×F formé par les couples d'éléments liés par la correspondance :
Cet ensemble est appelé le graphe de f parce qu'il permet d'en donner une représentation graphique dans le cas usuel où E et F sont des ensembles de réels : en effet, on peut alors parfois représenter E et F sur deux axes sécants, chaque couple de G peut alors être représenté par un point dans le plan, muni d'un repère défini par les deux axes. On parle aussi de courbe représentative de la fonction.
Si E est le plan R et F est l'ensemble des réels R, le graphe de la fonction est une surface gauche dans l'espace euclidien à 3 dimensions.
Il est possible alors de se ramener à une représentation plane en considérant des courbes de niveau, c'est-à-dire en dessinant dans le plan de départ une carte altimétrique du relief de la surface gauche.
Dans le cas des fonctions complexes, E est le plan complexe C et F est aussi l'ensemble des complexes C. Le besoin de 4 dimensions rend la représentation graphique plus compliquée. Plusieurs méthodes existent, soit en utilisant deux graphes en 3 dimensions (parties réelle et imaginaire, module et argument), soit en utilisant un graphe en 2 dimensions associé à la coloration de régions.
Test de la droite verticale
Une partie G de E×F est le graphe d'une fonction de E dans F si et seulement si pour tout élément x de E, G∩({x}×F) est un singleton ou vide.
C'est le graphe d'une application de E dans F si et seulement si pour tout x dans E, G∩({x}×F) est un singleton.
Test de la droite horizontale
Une fonction de E dans F de graphe G est injective si et seulement si pour tout élément y de F, G∩(E×{y}) est un singleton ou vide.
Elle est surjective si et seulement si pour tout y dans F, G∩(E×{y}) est non vide.
Une partie G de E×F est donc le graphe d'une bijection de E dans F si et seulement si pour tout x dans E, G∩({x}×F) est un singleton et pour tout y dans F, G∩(E×{y}) est un singleton.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
thumb|Représentation du graphe de la fonction . Le graphe d'une fonction f de E dans F est le sous-ensemble G de E×F formé par les couples d'éléments liés par la correspondance : Cet ensemble est appelé le graphe de f parce qu'il permet d'en donner une représentation graphique dans le cas usuel où E et F sont des ensembles de réels : en effet, on peut alors parfois représenter E et F sur deux axes sécants, chaque couple de G peut alors être représenté par un point dans le plan, muni d'un repère défini par les deux axes.
In common usage, the abscissa refers to the k(x) coordinate and the ordinate refers to the (y) coordinate of a standard two-dimensional graph. The distance of a point from the y-axis, scaled with the x-axis, is called the abscissa or x coordinate of the point. The distance of a point from the x-axis scaled with the y-axis is called the ordinate or y coordinate of the point. For example, if (x, y) is an ordered pair in the Cartesian plane, then the first coordinate in the plane (x) is called the abscissa and the second coordinate (y) is the ordinate.
vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
Les systèmes non linéaires sont analysés en vue d'établir des lois de commande. On présente la stabilité au sens de Lyapunov, ainsi que des méthodes de commande géométrique (linéarisation exacte). Div