En mathématiques, particulièrement en système dynamique, une application de Poincaré, nommée en l'honneur de Henri Poincaré, est une application liée à une dans l'espace d'états d'un système dynamique et un certain sous-espace de dimension moindre, appelé la section de Poincaré, transverse au flot du système. Plus précisément, on considère une orbite suffisamment proche d'une orbite périodique, avec une condition initiale sur la section de Poincaré, et on observe le point auquel cette orbite revient à la section pour la première fois, d'où ses autres noms, application de premier retour ou application de récurrence. La transversalité de la section de Poincaré fait référence au fait que l'orbite périodique commence au travers du flot du sous-espace et non pas de façon parallèle à celui-ci. Une orbite est périodique si et seulement si sa condition initiale est un point fixe de l'application de Poincaré. Des théorèmes d'existence de solutions périodiques d'équations différentielles non linéaires (autonomes et non autonomes) découlent de l'utilisation de la théorie du degré topologique, en particulier du théorème du point fixe de Brouwer, pour l'application de Poincaré. De plus des approximations numériques de ces solutions périodiques et de leur période - dans le cas des systèmes autonomes- sont obtenues par la résolution numérique des points fixes de l'application de Poincaré, par l'intermédiaire d'applications de Poincaré approchées à l'aide des méthodes de discrétisation pour les problèmes de Cauchy. Une application de Poincaré peut être vue comme un système dynamique discret, avec un espace d'état de dimension égale à celle du système dynamique continu original, moins une. Comme ce nouveau système dynamique conserve plusieurs propriétés des orbites périodiques et quasi périodiques du système original et comme le nouveau système comporte un espace d'états de dimension inférieure, il est souvent utile pour l'analyse du système original. Par contre, ceci n'est pas toujours possible en pratique, puisqu'il n'existe aucune méthode générale de construction de l'application de Poincaré.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
COM-502: Dynamical system theory for engineers
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
PHYS-431: Quantum field theory I
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to holography, the modern approach to quantum gravity.
Afficher plus
Concepts associés (9)
Point périodique
vignette|Diagramme explicatif du point périodique de période 4 du système dynamique discret f En mathématiques, un point périodique pour une fonction est un point fixe pour l’une des fonctions itérées. La période de ce point est alors la période de la suite récurrente associée. De tels points périodiques apparaissent facilement avec une suite logistique lorsque le paramètre μ dépasse la valeur 3. Le théorème de Charkovski donne un ordre sur les périodes pouvant apparaitre dans les suites récurrentes réelles simples associée à une fonction donnée.
Structural stability
In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact C1-small perturbations). Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods). Unlike Lyapunov stability, which considers perturbations of initial conditions for a fixed system, structural stability deals with perturbations of the system itself.
Équation différentielle autonome
Une équation différentielle autonome est un cas particulier important d'équation différentielle où la variable n'apparaît pas dans l'équation fonctionnelle. C'est une équation de la forme : Les lois de la physique s'appliquent en général à des fonctions du temps, et se présentent sous forme d'équations différentielles autonomes, ce qui manifeste l'invariance de ces lois dans le temps. Ainsi, si un système autonome revient à sa position initiale au bout d'un intervalle de temps , il connaît dès lors une évolution périodique de période .
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.