Résumé
Une équation différentielle autonome est un cas particulier important d'équation différentielle où la variable n'apparaît pas dans l'équation fonctionnelle. C'est une équation de la forme : Les lois de la physique s'appliquent en général à des fonctions du temps, et se présentent sous forme d'équations différentielles autonomes, ce qui manifeste l'invariance de ces lois dans le temps. Ainsi, si un système autonome revient à sa position initiale au bout d'un intervalle de temps , il connaît dès lors une évolution périodique de période . L'étude des équations autonomes est équivalente à celle des champs de vecteurs. Pour une équation du premier ordre, les solutions sont une famille de courbes qui ne se coupent pas (d'après le théorème de Cauchy-Lipschitz) et qui remplissent l'espace. Elles sont tangentes au champ de vecteurs en chaque point. Sur certains intervalles, il est possible de déterminer des solutions explicites de l'équation . La solution générale, garantie par le théorème de Cauchy-Lipschitz, ne peut en général être obtenue qu'en prolongeant ces solutions particulières (et on sait que si est une de ces solutions, les autres sont de la forme ). Sur un intervalle où f ne s'annule pas, il existe une primitive G de 1/f ; G est monotone et donc bijective, puisque f est de signe constant. L'équation est donc équivalente à , et donc G(y)(x) = x + C, et . Sans perte de généralité, on peut se ramener à la résolution de Exprimant la fonction en série de Taylor (sur un intervalle où cette série converge), on a La solution est alors donnée par la série de Taylor : avec et Quand on parle de systèmes autonomes la variable est en général le temps t. Un système différentiel est dit autonome si ses équations ne comportent aucune fonction de t autre que les fonctions inconnues et leurs dérivées. La particularité d'un système autonome, par rapport aux autres systèmes différentiels, est que par tout point de l'espace des solutions il passe une trajectoire et une seule.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.