1 + 2 + 4 + 8 + ⋯En mathématiques, est la série infinie dont les termes sont les puissances successives de 2. Comme une série géométrique, elle se caractérise par son premier terme, 1, et sa raison, 2. Comme une série de nombres réels, elle diverge vers l'infini, donc dans le sens usuel, elle n'a pas de somme. Dans un sens beaucoup plus large, la série est associée à une autre valeur en dehors de ∞, à savoir –1. Les sommes partielles de sont Puisque celles-ci divergent à l'infini, la série diverge aussi vers l'infini.
1 + 2 + 3 + 4 + ⋯1 + 2 + 3 + 4 + ⋯, la série des entiers strictement positifs pris dans l'ordre croissant, est en analyse une série divergente. La n-ième somme partielle de cette série est le nombre triangulaire : La suite de ces sommes partielles est croissante et non majorée donc tend vers l'infini. Bien que cette série ne possède donc a priori pas de valeur significative, elle peut être manipulée pour produire un certain nombre de résultats mathématiquement intéressants (en particulier, diverses méthodes de sommation lui donnent la valeur -1/12), dont certains ont des applications dans d'autres domaines, comme l'analyse complexe, la théorie quantique des champs, la théorie des cordes ou encore l'effet Casimir.
Série divergenteEn mathématiques, une série infinie est dite divergente si la suite de ses sommes partielles n'est pas convergente. En ce qui concerne les séries de nombres réels, ou de nombres complexes, une condition nécessaire de convergence est que le terme général de la série tende vers 0. Par contraposition, cela fournit de nombreux exemples de séries divergentes, par exemple celle dont tous les termes valent 1.
Série de Grandivignette|Écriture mathématique de la série de Grandi En analyse mathématique, la série 1 − 1 + 1 − 1 + ... ou est parfois appelée la série de Grandi, du nom du mathématicien, philosophe et prêtre Luigi Guido Grandi, qui en donna une analyse célèbre en 1703. Il s'agit d'une série divergente, c'est-à-dire que la suite de ses sommes partielles n'a pas de limite. Mais sa somme de Cesàro, c'est-à-dire la limite des moyennes de Cesàro de cette même suite, existe et vaut . Une méthode évidente pour traiter la série 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + .