Vérité creuseEn mathématiques et en logique, une est un énoncé conditionnel ou universel qui est vrai parce que l'antécédent ne peut être satisfait. Par exemple, l'énoncé « tous les téléphones portables dans la pièce sont éteints » est vrai lorsqu'aucun téléphone portable ne se trouve dans la pièce. Dans ce cas, l'énoncé « tous les téléphones cellulaires dans la pièce sont allumés » est également vrai, tout comme la conjonction des deux : « tous les téléphones cellulaires dans la pièce sont allumés et éteints », qui serait autrement incohérente.
Sémantique formelle (logique)En logique, la sémantique de la logique est l'étude de la sémantique, ou l'interprétation, des langages formels et naturels qui, en général, tentent de saisir la notion pré-théorique de déduction. Parmi les tâches des logiciens figure la fourniture de signification aux propositions. Avant l'avènement de la logique moderne, l'Organon d'Aristote, et en particulier De Interpretatione a servi de base à la compréhension de l'importance de la logique.
Logique temporelleLa logique temporelle est une branche de la logique mathématique et plus précisément de la logique modale, qui est formalisée de plusieurs manières. La caractéristique commune de ces formalisations réside en l'ajout de modalités (autrement dit de « transformateurs de prédicats ») liées au temps ; par exemple, une formule typique de la logique modale est la formule , qui se lit : « la formule est satisfaite jusqu'à ce que la formule le soit » et qui signifie que l'on cherche à garantir qu'une certaine propriété (ici ) est satisfaite pendant tout le temps qui court avant qu'une autre formule (ici ) le soit.