La fonction d’efficacité du récepteur, plus fréquemment désignée sous le terme « courbe ROC » (de l’anglais receiver operating characteristic, pour « caractéristique de fonctionnement du récepteur ») dite aussi caractéristique de performance (d'un test) ou courbe sensibilité/spécificité, est une mesure de la performance d'un classificateur binaire, c'est-à-dire d'un système qui a pour objectif de catégoriser des éléments en deux groupes distincts sur la base d'une ou plusieurs des caractéristiques de chacun de ces éléments. Graphiquement, on représente souvent la mesure ROC sous la forme d'une courbe qui donne le taux de vrais positifs (fraction des positifs qui sont effectivement détectés) en fonction du taux de faux positifs (fraction des négatifs qui sont incorrectement détectés).
Les courbes ROC furent inventées pendant la Seconde Guerre mondiale pour montrer la séparation entre les signaux radar et le bruit de fond.
Elles sont souvent utilisées en statistiques pour montrer les progrès réalisés grâce à un classificateur binaire lorsque le seuil de discrimination varie. Si le modèle calcule un score s qui est comparé au seuil S pour prédire la classe ([s ≥ S] = positif et [s < S] = négatif, généralement), et qu’on compare ensuite avec les classes positif et négatif réelles, la sensibilité est donnée par le taux de positifs réels classés positifs, et l’antispécificité (1 moins la spécificité) par le taux de négatifs réels classés positifs. On met l’antispécificité en abscisse et la sensibilité en ordonnée pour former la courbe ROC. Chaque valeur de S fournit un point de la courbe, qui croit (non-strictement) de (0, 0) à (1, 1).
En (0, 0) le classificateur classe tout négatif : il n’y a aucun faux positif, mais également aucun vrai positif. Les proportions de vrais et faux négatifs dépendent de la population sous-jacente.
En (1, 1) le classificateur classe tout positif : il n’y a aucun vrai négatif, mais également aucun faux négatif. Les proportions de vrais et faux positifs dépendent de la population sous-jacente.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En épidémiologie, la prévalence est le rapport entre l'ensemble des cas présents ou passés d'un évènement ou d'une maladie et l'ensemble de la population exposée, à une date donnée. Ce rapport représente la proportion de personnes concernées par le phénomène et n'a pas d'unité. Prévalence et taux de prévalence sont deux termes équivalents. La prévalence est exprimée en pourcentage, en taux pour une population donnée, par exemple 100 000 individus (mais tout autre nombre est possible et doit être précisé).
En statistique, la sensibilité (ou sélectivité) d'un test mesure sa capacité à donner un résultat positif lorsqu'une hypothèse est vérifiée. Elle s'oppose à la spécificité, qui mesure la capacité d'un test à donner un résultat négatif lorsque l'hypothèse n'est pas vérifiée. Ces notions sont d'une importance majeure en épidémiologie et en , notamment au travers des courbes ROC. Cet article présente ces notions dans le cadre de l'application en épidémiologie.
En apprentissage automatique supervisé, la matrice de confusion est une matrice qui mesure la qualité d'un système de classification. Chaque ligne correspond à une classe réelle, chaque colonne correspond à une classe estimée. La cellule ligne L, colonne C contient le nombre d'éléments de la classe réelle L qui ont été estimés comme appartenant à la classe C. Attention il y a parfois interversion des axes de la matrice en fonction des auteurs.
This is a practice-based course, where students program algorithms in machine learning and evaluate the performance of the algorithm thoroughly using real-world dataset.
This course covers the physical principles underlying medical diagnostic imaging (radiography, fluoroscopy, CT, SPECT, PET, MRI), radiation therapy and radiopharmacy. The focus is not only on risk an
Ce cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Recent research shows prominent effects of pregnancy and the parenthood transition on structural brain characteristics in humans. Here, we present a comprehensive study of how parental status and number of children born/fathered links to markers of brain a ...
Pergamon-Elsevier Science Ltd2024
, , , ,
This research explores the potential of multimodal fusion for the differential diagnosis of early-stage lung adenocarcinoma (LUAD) (tumor sizes < 2 cm). It combines liquid biopsy biomarkers, specifically extracellular vesicle long RNA (evlRNA) and the comp ...
Berlin2024
,
Within the scope of the implementation of a nuclear data pipeline aiming at producing the best possible evaluated nuclear data files, a major point is the production of relevant sensitivity coefficients when including integral benchmark information. Thanks ...