Karl Theodor Wilhelm Weierstrass, habituellement appelé Karl Weierstrass, orthographié Weierstraß en allemand, né le à Ostenfelde (Province de Westphalie), mort le à Berlin, est un mathématicien allemand, lauréat de la médaille Copley en 1895. Karl Theodor Wilhelm Weierstrass naît au sein d'une famille catholique de Westphalie. Il est le premier enfant de Theodora Vonderforst et Wilhelm Weierstrass, inspecteur des impôts, un homme cultivé, qui a des connaissances en chimie et en physique et parle le français à la perfection. La famille mène une existence plutôt confortable, le père souhaite que ses fils obtiennent de belles situations dans l'administration. La mère de Karl meurt alors qu'il n'a que douze ans. Un an après sa mort, Wilhelm épouse en secondes noces Maria Theresa Hölscher. En raison du travail du père, la famille déménage assez souvent. Karl commence l'école primaire à Münster, puis en 1829, on l'inscrit à l'Institut catholique de Paderborn. C'est un excellent élève et il obtient des prix dans plusieurs matières, dont les mathématiques, pour lesquelles il montre de grandes dispositions. Il y apprend les bases de la géométrie, de la trigonométrie et de la théorie des nombres. Karl remporte de nombreux prix d'excellence, en allemand, latin et grec ainsi qu'en poésie. L'Institut catholique de Paderborn possède une bonne bibliothèque scientifique, et l'élève Weierstrass la fréquente assidûment. C'est là qu'il commence à lire régulièrement le Journal für die reine und angewandte Mathematik, mieux connu sous le nom de Crelle. Cette publication jouera un rôle décisif dans la carrière de Weierstrass. Pendant sa scolarité à Paderborn, de 1829 à 1834, plusieurs volumes de Crelle paraissent et il peut y lire divers articles et lettres publiés de mathématiciens, parmi lesquels figurent ceux de Niels Henrik Abel, Adrien-Marie Legendre, Charles Gustave Jacob Jacobi et Christoph Gudermann, qui sera plus tard l'un de ses professeurs. Plusieurs de ces articles traitent des fonctions elliptiques, qui deviendront l'un de ses grands centres d'intérêt.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
MATH-101(de): Analysis I (German)
Es werden die Grundlagen der Analysis sowie der Differential- und Integralrechnung von Funktionen einer reellen Veränderlichen erarbeitet.
MATH-100(a): Advanced analysis I - real analysis
Etude des concepts fondamentaux de l'analyse, calcul différentiel et intégral de fonctions réelles d'une variable réelle
MATH-100(b): Advanced analysis I
Dans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.
Afficher plus
Séances de cours associées (36)
Fonction Composition
Couvre le concept de composition de fonction et les propriétés des bijections lors de la composition des fonctions.
Les nombres complexes : convergence, équations et fonctions exponentielles
Couvre la convergence des séries de puissance, des équations complexes, des fonctions exponentielles et des propriétés de fonction.
Fonctions, Bijection
Explique la surjectivité, l'injectivité et la bijectivité dans les fonctions, y compris des exemples trigonométriques.
Afficher plus
Concepts associés (10)
Limite (mathématiques élémentaires)
La notion de limite est très intuitive malgré sa formulation abstraite. Pour les mathématiques élémentaires, il convient de distinguer une limite en un point réel fini (pour une fonction numérique) et une limite en ou (pour une fonction numérique ou une suite), ces deux cas apparemment différents pouvant être unifiés à travers la notion topologique de voisinage. Les limites servent (entre autres) à définir les notions fondamentales de continuité et de dérivabilité.
Fonction de Weierstrass
La fonction de Weierstrass, aussi appelée fonction de Weierstrass-Hardy, fut en 1872 le premier exemple publié d'une fonction réelle d'une variable réelle qui est continue partout, mais dérivable nulle part. On le doit à Karl Weierstrass et Leopold Kronecker ; les hypothèses ont été améliorées par G. H. Hardy.vignette|Évolution de la courbe de la fonction de Weierstrass lors d'une augmentation linéaire de la valeur de b de 0,1 à 5, pour a fixé égal à 0,5. la non-dérivabilité démarre à b = 2.
Infiniment petit
Les infinitésimaux (ou infiniment petits) ont été utilisés pour exprimer l'idée d'objets si petits qu'il n'y a pas moyen de les voir ou de les mesurer. Le mot vient de infinitesimus (latin du ), ce qui signifiait à l'origine l'élément dans une série. Selon la notation de Leibniz, si x est une quantité, dx et Δx peuvent représenter une quantité infinitésimale de x. Dans le langage courant, un objet infiniment petit est un objet qui est plus petit que toute mesure possible, donc non pas d'une taille zéro, mais si petit qu'il ne peut être distingué de zéro par aucun moyen disponible.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.