Explorer des modèles linéaires généralisés pour les données non gaussiennes, couvrant l'interprétation de la fonction de liaison naturelle, la normalité asymptotique MLE, les mesures de déviance, les résidus et la régression logistique.
Explore la suffisance et l'ancilarité de la théorie de l'échantillonnage, soulignant l'importance de statistiques suffisantes pour compresser les données sans perdre d'information.
Couvre le concept de la famille exponentielle et discute des cartes en avant et en arrière, des calculs coûteux, des paramètres, des fonctions et de la convexité.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Déplacez-vous dans des modèles générateurs basés sur les scores, explorant les distributions naturelles d'apprentissage et l'impact de l'architecture de réseau neuronal sur la robustesse.