Disphénoïde adouciEn géométrie, le disphénoïde adouci est un des solides de Johnson (J84). C'est un polyèdre qui possède seulement des faces formées de triangles équilatéraux, et est, par conséquent un deltaèdre. Ce n'est pas un polyèdre régulier car certains sommets ont quatre faces et d'autres en ont cinq. C'est un des solides de Johnson élémentaires qui n'apparaît pas à partir de manipulation en « copier/coller » de solides de Platon et de solides d'Archimèdes. Il a douze faces et constitue ainsi un exemple de dodécaèdre.
Antiprisme carré adouciEn géométrie, l'antiprisme carré adouci est un des solides de Johnson (J85). C'est un des solides de Johnson élémentaires qui n'apparaît pas à partir de manipulation en "copier/coller" de solides de Platon et de solides d'Archimède. Il peut être conçu comme un antiprisme carré avec une chaîne de triangles insérés autour du milieu. Un effet similaire peut être réalisé avec un antiprisme triangulaire (un octaèdre), ce qui donne un icosaèdre. Les 92 solides de Johnson ont été nommés et décrits par Norman Johnson en 1966.
Uniform tilings in hyperbolic planeIn hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the tiling has a high degree of rotational and translational symmetry.
Polyèdre adouciEn géométrie, un polyèdre adouci est un polyèdre obtenu en écartant les faces d'un polyèdre et en comblant les trous par des triangles équilatéraux. Souvent, cela consiste à remplacer chaque sommet du polyèdre par un triangle équilatéral et chaque arête par deux triangles équilatéraux. L'appellation "adouci" vient du fait que le polyèdre obtenu par cette déformation possède des angles dièdres beaucoup moins aigus et une surface plus proche de celle de la sphère. La plupart des polyèdres adoucis sont chiraux.
Grand icosidodécaèdre rétroadouciEn géométrie, le grand icosidodécaèdre rétroadouci est un polyèdre uniforme non convexe, indexé sous le nom U74. Les coordonnées cartésiennes des sommets d'un grand icosidodécaèdre rétroadouci centré à l'origine sont les permutations paires de (±2α, ±2, ±2β), (±(α−βτ−1/τ), ±(α/τ+β−τ), ±(−ατ−β/τ−1)), (±(ατ−β/τ+1), ±(−α−βτ+1/τ), ±(−α/τ+β+τ)), (±(ατ−β/τ−1), ±(α+βτ+1/τ), ±(−α/τ+β−τ)) et (±(α−βτ+1/τ), ±(−α/τ−β−τ), ±(−ατ−β/τ+1)), avec un nombre pair de signes plus, où α = ξ−1/ξ et β = −ξ/τ+1/τ2−1/(ξτ), où τ = (1+√5)/2 est le nombre d'or (quelquefois écrit φ) et ξ est la plus petite solution positive réelle de ξ3−2ξ=−1/τ, ou approximativement 0,3264046.
Antiprisme carréEn géométrie, l'antiprisme carré est le deuxième solide de l'ensemble infini des antiprismes. Celui-ci peut être regardé comme un prisme carré droit dont on a opéré une fraction de tour sur une des deux faces carrées supérieure ou inférieure pour faire un sommet avec le milieu de l'arête correspondante. Ce qui a pour résultat une suite de triangles en nombre pair sur les côtés, et deux faces carrées supérieure et inférieure. Si toutes ses faces sont régulières, c'est un polyèdre semi-régulier.
Grand icosidodécaèdre adouci inverséEn géométrie, le grand icosidodécaèdre adouci inversé est un polyèdre uniforme non convexe, indexé sous le nom U69. Les coordonnées cartésiennes des sommets d'un grand icosidodécaèdre adouci inversé centré à l'origine sont les permutations paires de (±2α, ±2, ±2β), (±(α−βτ−1/τ), ±(α/τ+β−τ), ±(−ατ−β/τ−1)), (±(ατ−β/τ+1), ±(−α−βτ+1/τ), ±(−α/τ+β+τ)), (±(ατ−β/τ−1), ±(α+βτ+1/τ), ±(−α/τ+β−τ)) et (±(α−βτ+1/τ), ±(−α/τ−β−τ), ±(−ατ−β/τ+1)), avec un nombre pair de signes plus, où α = ξ−1/ξ et β = −ξ/τ+1/τ2−1/(ξτ), où τ = (1+√5)/2 est le nombre d'or (quelquefois écrit φ) et ξ est la plus grande solution réelle positive de ξ3−2ξ=−1/τ, ou approximativement 1,2224727.
Regular icosahedronIn geometry, a regular icosahedron (ˌaɪkɒsəˈhiːdrən,-kə-,-koʊ- or aɪˌkɒsəˈhiːdrən) is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces. It has five equilateral triangular faces meeting at each vertex. It is represented by its Schläfli symbol {3,5}, or sometimes by its vertex figure as 3.3.3.3.3 or 35. It is the dual of the regular dodecahedron, which is represented by {5,3}, having three pentagonal faces around each vertex.
Snub 24-cellIn geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular faces, 432 edges, and 96 vertices. One can build it from the 600-cell by diminishing a select subset of icosahedral pyramids and leaving only their icosahedral bases, thereby removing 480 tetrahedra and replacing them with 24 icosahedra.
Pavage carré adouciIn geometry, the snub square tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. Its Schläfli symbol is s{4,4}. Conway calls it a snub quadrille, constructed by a snub operation applied to a square tiling (quadrille). There are 3 regular and 8 semiregular tilings in the plane. There are two distinct uniform colorings of a snub square tiling. (Naming the colors by indices around a vertex (3.3.4.3.4): 11212, 11213.