Concept

Complétion (algèbre)

Résumé
En algèbre, une complétion est l'un des foncteurs sur les anneaux et les modules qui produit des anneaux topologiques et modules topologiques complets. La complétion est similaire à la localisation et, ensemble, ce sont des outils de base pour étudier les anneaux commutatifs. Les anneaux commutatifs complets ont une structure plus simple que les anneaux généraux, et on peut y appliquer le lemme de Hensel. En géométrie algébrique, la complétion de l'anneau R des fonctions au voisinage d'un point x d'un espace X donne un voisinage formel du point x : intuitivement, c'est un voisinage tellement petit que toutes les séries de Taylor centrées en ce point convergent. Une complétion algébrique est construite de manière analogue à la complétion d'un espace métrique avec des suites de Cauchy, et coïncide avec elle dans le cas où l'anneau a un métrique donnée par une valeur absolue non archimédéenne. On se donne un anneau commutatif A et un A-module E doté d'une suite décroissante de sous-modules (une filtration) : E = E0 ⊇ E1 ⊇ ··· ⊇ En ⊇ ··· On va considérer ces sous-modules En comme des voisinages de 0 ; par translation, les ensembles x + En sont des voisinages du point x . On a défini ainsi une topologie sur le module E pour laquelle il n'est pas forcément complet, ni séparé. On définit le séparé complété de E (relatif à cette filtration) comme la limite projective Ê du diagramme suivant : 0 = E/E ← E/E1 ← ··· ← E/En ← ··· Une façon d'interpréter cette limite revient à voir E/En comme une approximation de Ê « à En près ». La limite Ê est encore un module sur A et la limite des applications linéaires E → E/En est une application linéaire E → Ê. La topologie de Ê est la limite projective des topologies discrètes des quotients E/En et Ê est séparé et complet pour cette topologie. En effet, l'application E → Ê a pour noyau l'intersection des En, intersection des voisinages de zéro, ce qui fait que la topologie de Ê est séparée. Cette construction s'applique en particulier aux groupes commutatifs, qui sont des modules sur l'anneau Z des entiers, et aux espaces vectoriels.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.