BisectionIn geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a 'bisector'. The most often considered types of bisectors are the 'segment bisector' (a line that passes through the midpoint of a given segment) and the 'angle bisector' (a line that passes through the apex of an angle, that divides it into two equal angles). In three-dimensional space, bisection is usually done by a bisecting plane, also called the 'bisector'.
Droites concourantesEn mathématiques, des droites concourantes sont des droites qui ont un point d'intersection commun, ce point étant appelé point de concours. Lorsque seules deux droites sont en jeu, le fait qu'elles soient concourantes est équivalent au fait qu'elles soient sécantes, ce qui fait que le vocable ne s'emploie pas dans ce cadre. En revanche, à partir de trois droites en présence, les deux propriétés ne sont pas équivalentes : trois droites concourantes sont nécessairement sécantes deux à deux mais l'implication réciproque est fausse.
Périmètrethumb|Le périmètre du carré vaut ici 8.|alt=Schéma d'un carré avec une longueur de deux. thumb|Selon Homère, le périmètre de Troie était de pas (photo des remparts supposés de Troie).|alt=Photo des remparts supposés de Troie. Le périmètre d'une figure plane est la longueur développée du contour de cette figure. Le calcul du périmètre sert par exemple à déterminer la quantité de grillage nécessaire à la clôture d'un terrain. Pour tout polygone, le périmètre est égal à la somme des longueurs des côtés.
Coordonnées barycentriquesEn géométrie affine, les coordonnées barycentriques d'un point par rapport à un repère barycentrique sont une famille de poids permettant de définir ce point comme un barycentre. Repère affine Une famille finie (P,...,P) de points d'un espace affine E est dite affinement libre, ou encore ces points sont dits affinement indépendants, quand aucun des points P n'appartient au sous-espace affine engendré par les k autres points. Dans le cas contraire il est dit affinement lié.
Spieker centerIn geometry, the Spieker center is a special point associated with a plane triangle. It is defined as the center of mass of the perimeter of the triangle. The Spieker center of a triangle △ABC is the center of gravity of a homogeneous wire frame in the shape of △ABC. The point is named in honor of the 19th-century German geometer Theodor Spieker. The Spieker center is a triangle center and it is listed as the point X(10) in Clark Kimberling's Encyclopedia of Triangle Centers.
TriangleEn géométrie euclidienne, un triangle est une figure plane formée par trois points (appelés sommets) et par les trois segments qui les relient (appelés côtés), délimitant un domaine du plan appelé intérieur. Lorsque les sommets sont distincts deux à deux, en chaque sommet les côtés délimitent un angle intérieur, d'où vient la dénomination de « triangle ». Le triangle est aussi le polygone le plus simple qui délimite une portion du plan et sert ainsi d'élément fondamental pour le découpage et l'approximation de surfaces.