Mouvement képlérienEn astronomie, plus précisément en mécanique céleste, le mouvement képlérien correspond à une description du mouvement d'un astre par rapport à un autre respectant les trois lois de Kepler. Pour cela il faut que l'interaction entre les deux astres puisse être considérée comme purement newtonienne, c'est-à-dire qu'elle varie en raison inverse du carré de leur distance, et que l'influence de tous les autres astres soit négligée.
Semi-major and semi-minor axesIn geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.
Orbite elliptiqueEn mécanique céleste et en mécanique spatiale, une orbite elliptique est une orbite dont l'excentricité est inférieure à 1 et non nulle. L'astronome andalou et musulman Al-Zarqali du suggère et affirme déjà que les orbites planétaires sont des ellipses. L'ellipticité des orbites héliocentriques de la Terre et des autres planètes du Système solaire a été découverte par l'astronome allemand et protestant Johannes Kepler (1571-1630), à partir des observations de l'orbite de la planète Mars.
Excentricité orbitaleL’excentricité orbitale définit, en mécanique céleste et en mécanique spatiale, la forme des orbites des objets célestes. L'excentricité est couramment notée . Elle exprime l'écart de forme entre l'orbite et le cercle parfait dont l'excentricité est nulle. Lorsque , la trajectoire est fermée : l'orbite est périodique. Dans ce cas : lorsque , l'objet décrit un cercle et son orbite est dite circulaire ; lorsque , l'objet décrit une ellipse et son orbite est dite elliptique. Lorsque , la trajectoire est ouverte.
Anomalie vraielang=fr|vignette|Diagramme montrant diverses anomalies d'une ellipse. L'anomalie vraie y est notée . En mécanique céleste, l'anomalie vraie est l'angle entre la direction du périapside et la position courante d'un objet sur son orbite, mesuré au foyer de l'ellipse (le point autour duquel le corps orbite). Dans le diagramme ci-contre, c'est , c'est-à-dire l'angle zsp. L'anomalie vraie correspond, comme son nom le suggère, à un angle existant réellement dans l'orbite d'un corps céleste.
Mécanique spatialeLa mécanique spatiale, aussi dénommée astrodynamique, est, dans le domaine de l'astronomie et de l'astronautique, la science qui a trait à l'étude des mouvements. C'est une branche particulière de la mécanique céleste qui a notamment pour but de prévoir les trajectoires des objets spatiaux tels que les fusées ou les engins spatiaux y compris les manœuvres orbitales, les changements de plan d'orbite et les transferts interplanétaires.
Équation de KeplerEn astronomie, l'équation de Kepler est une formule liant, dans une orbite, l'excentricité e et l'anomalie excentrique E à l'anomalie moyenne M. L'importance de cette équation est qu'elle permet de passer des paramètres dynamiques du mouvement d'un astre (l'anomalie moyenne) aux paramètres géométriques (l'anomalie excentrique). Cette équation a été établie par Kepler dans le cas des orbites elliptiques, en analysant les relevés de position de la planète Mars effectués par Tycho Brahe.
Anomalie excentriquelang=fr|thumb|Diagramme montrant diverses anomalies d'une ellipse. Dans la description de l'orbite képlérienne d'un objet céleste, l'anomalie excentrique, en général notée E, est l'angle entre la direction du périapside et la position courante d'un objet sur son orbite, projetée sur le cercle exinscrit perpendiculairement au grand axe de l'ellipse, mesuré au centre de celle-ci. Dans le diagramme ci-contre, c'est l'angle zcx. z est le périapside, p la position de l'objet, s le foyer de son orbite elliptique, c le centre de l'ellipse.
Trajectoire paraboliquethumb|La ligne verte représente une trajectoire parabolique. En mécanique céleste et en mécanique spatiale, une trajectoire parabolique (ou orbite parabolique) est une orbite de Kepler dont l'excentricité est égale à 1. L'objet en orbite décrit alors, sur le plan de l'orbite, une parabole dont le foyer est l'objet plus massif. Le mouvement parabolique s'effectue lorsqu'un projectile est soumis à une vitesse initiale et à la seule accélération de la pesanteur. Un exemple courant de mouvement parabolique est l'obus tiré depuis un canon.
Orbital elementsOrbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics. A real orbit and its elements change over time due to gravitational perturbations by other objects and the effects of general relativity.