Concepts associés (22)
Fonction successeur
En mathématiques, la fonction successeur est une fonction récursive primitive S telle que S(n) = n+1 pour tout entier naturel n. Par exemple, S(1) = 2 et S(2) = 3. La fonction successeur apparaît dans les axiomes de Peano qui définissent les entiers naturels. Elle n'y est pas définie à partir de l'opération d'addition, mais est une opération primitive qui sert à définir les entiers naturels à partir de 0, mais aussi les autres opérations sur les entiers naturels, dont l'addition.
Axiome d'extensionnalité
L’axiome d’extensionnalité est l’un des axiomes-clés de la plupart des théories des ensembles, en particulier, des théories des ensembles de Zermelo, et de Zermelo-Fraenkel (ZF). Il énonce essentiellement qu'il est suffisant de vérifier que deux ensembles ont les mêmes éléments pour montrer que ces deux ensembles sont égaux, au sens où ils ont les mêmes propriétés, aucune propriété ne permettra de distinguer un ensemble de l'autre.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.