L’axiome d’extensionnalité est l’un des axiomes-clés de la plupart des théories des ensembles, en particulier, des théories des ensembles de Zermelo, et de Zermelo-Fraenkel (ZF). Il énonce essentiellement qu'il est suffisant de vérifier que deux ensembles ont les mêmes éléments pour montrer que ces deux ensembles sont égaux, au sens où ils ont les mêmes propriétés, aucune propriété ne permettra de distinguer un ensemble de l'autre. Dit d'une façon plus approximative, il affirme que quelle que soit la façon dont on définit un ensemble, celui-ci ne dépend que de son extension, les éléments qui lui appartiennent, et pas de la façon dont il a été défini.
Cet axiome peut paraître évident pour la notion intuitive d'ensemble, mais a des conséquences importantes sur la complexité de l'égalité dans la théorie. Pour vérifier l'égalité de deux ensembles, on est amené, à cause par exemple du schéma d'axiomes de compréhension, à vérifier des équivalences entre énoncés de complexité arbitraire, ces énoncés eux-mêmes pouvant utiliser l'égalité entre ensembles (rappelons qu'il n'y a que des ensembles dans les théories des ensembles usuelles).
L’axiome est donc intimement lié à la notion d’égalité de deux ensembles. Il permet de montrer l’unicité d’ensembles caractérisés par la donnée de leurs éléments, tels l’ensemble vide, les singletons, les paires, l'ensemble des parties d'un ensemble...
L’égalité peut être introduite en théorie des ensembles, de diverses façons. Actuellement, elle est le plus souvent considérée comme une relation primitive, axiomatisée au niveau logique. La théorie des ensembles est alors une théorie énoncée dans le langage du calcul des prédicats égalitaire du premier ordre, construit sur la seule relation d'appartenance.
Dans ce cas, l'axiome d'extensionnalité s'énonce ainsi :
Ce qui revient à dire que : si tout élément de l'ensemble A est aussi un élément de B, et si tout élément de l'ensemble B appartient à l'ensemble A, alors les deux ensembles A et B sont égaux.