Résumé
A valve actuator is the mechanism for opening and closing a valve. Manually operated valves require someone in attendance to adjust them using a direct or geared mechanism attached to the valve stem. Power-operated actuators, using gas pressure, hydraulic pressure or electricity, allow a valve to be adjusted remotely, or allow rapid operation of large valves. Power-operated valve actuators may be the final elements of an automatic control loop which automatically regulates some flow, level or other process. Actuators may be only to open and close the valve, or may allow intermediate positioning; some valve actuators include switches or other ways to remotely indicate the position of the valve. Used for the automation of industrial valves, actuators can be found in all kinds of process plants. They are used in waste water treatment plants, power plants, refineries, mining and nuclear processes, food factories, and pipelines. Valve actuators play a major part in automating process control. The valves to be automated vary both in design and dimension. The diameters of the valves range from one-tenth of an inch to several feet. The common types of actuators are: manual, pneumatic, hydraulic, electric and spring. A manual actuator employs levers, gears, or wheels to move the valve stem with a certain action. Manual actuators are powered by hand. Manual actuators are inexpensive, typically self-contained, and easy to operate by humans. However, some large valves are impossible to operate manually and some valves may be located in remote, toxic, or hostile environments that prevent manual operations in some conditions. As a safety feature, certain types of situations may require quicker operation than manual actuators can provide to close the valve. Air (or other gas) pressure is the power source for pneumatic valve actuators. They are used on linear or quarter-turn valves. Air pressure acts on a piston or bellows diaphragm creating linear force on a valve stem.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (22)
ME-410: Mechanical product design and development
Study and explore design principles of the different mechatronic components and systems. We will cover in-depth especially on meso-scale actuators, sensors and body construction methods.
ME-436: Micro/Nano robotics
The objective of this course is to expose students to the fundamentals of robotics at small scale. This includes a focus on physical laws that predominate at the nano and microscale, technologies for
ME-428: Data-driven design & fabrication methods
There is an increasing need for data-driven methods for automated design and fabrication of complex mechanical systems. This course covers methods for encoding the design space, optimization and sear
Afficher plus