Given a source of iid samples of edges of an input graph G with n vertices and m edges, how many samples does one need to compute a constant factor approximation to the maximum matching size in G? Moreover, is it possible to obtain such an estimate in a sm ...
Let G be a drawing of a graph with n vertices and e > 4n edges, in which no two adjacent edges cross and any pair of independent edges cross at most once. According to the celebrated Crossing Lemma of Ajtai, Chvatal, Newborn, Szemeredi and Leighton, the nu ...
We study the extinction time tau of the contact process started with full occupancy on finite trees of bounded degree. We show that, if the infection rate is larger than the critical rate for the contact process on Z, then, uniformly over all trees of degr ...
In a drawing of a graph, two edges form an odd pair if they cross each other an odd number of times. A pair of edges is independent if they share no endpoint. For a graph G, let ocr(G) be the smallest number of odd pairs in a drawing of G and let iocr(G) b ...
We present a framework for approximating the metric TSP based on a novel use of matchings. Traditionally, matchings have been used to add edges to make a given graph Eulerian, whereas our approach also allows for the removal of certain edges leading to a d ...
We construct a bipartite Euler system in the sense of Howard for Hilbert modular eigenforms of parallel weight two over totally real fields, generalizing works of Bertolini-Darmon, Longo, Nekovar, Pollack-Weston, and others. The construction has direct app ...
We consider the Node-weighted Steiner Forest problem on planar graphs. Demaine et al. showed that a generic primal-dual algorithm gives a 6-approximation. We present two different proofs of an approximation factor of~3. Then, we draw a connection to Goem ...
Let G = (V, E) be a graph with n vertices and m >= 4n edges drawn in the plane. The celebrated Crossing Lemma states that G has at least Omega(m(3)/n(2)) pairs of crossing edges; or equivalently, there is an edge that crosses Omega(m(2)/n(2)) other edges. ...
Starting from the famous Konigsberg bridge problem which Euler described in 1736, we intend to show that some results obtained 180 years later by Konig are very close to Euler's discoveries. ...
The split-coloring problem is a generalized vertex coloring problem where we partition the vertices into a minimum number of split graphs. In this paper, we study some notions which are extensively studied for the usual vertex coloring and the cocoloring p ...