Automatic verification of programs manipulating arrays relies on specialised decision procedures. A methodology to classify the theories handled by these procedures is introduced. It is based on decomposition theorems in the style of Feferman and Vaught. T ...
On ten loose handwritten folios dating back from April 1679, Leibniz gradually devised, in the course of three days, a full-blown theory of thought that nonetheless remained unpublished and still has received little attention from scholars. Conceiving of a ...
We consider sets L = {l(1),..., l(n)} of n labeled lines in general position in R-3, and study the order types of point sets {p(1),..., p(n)} that stem from the intersections of the lines in L with (directed) planes Pi, not parallel to any line of L, that ...
This paper discusses the design of load-bearing systems for buildings with regard to their current lack of open-ended reusability. The reason for dismantling load-bearing systems today tends to be less related to material degradation than to a loss of func ...
A family of subsets of {1, ... , n} is called intersecting if any two of its sets intersect. A classical result in extremal combinatorics due to Erdos, Ko and Rado determines the maximum size of an intersecting family of k-subsets of {1, ... , n}. In this ...
Suppose k is a positive integer and X is a k-fold packing of the plane by infinitely many arc-connected compact sets, which means that every point of the plane belongs to at most k sets. Suppose there is a function f(n) = o(n(2)) with the property that any ...
Let epsilon be a set of points in F-q(d). Bennett et al. (2016) proved that if \epsilon\ >> [GRAHICS] then epsilon determines a positive proportion of all k-simplices. In this paper, we give an improvement of this result in the case when epsilon is the Car ...
How is the future of automobility imagined today? What has structured such imaginary ? And what levers can steer its evolution towards a Post-Car World? These very three questions form the foundational motivations of this thesis.First, through a h ...
A system of sets forms an m-fold covering of a set X if every point of X belongs to at least m of its members. A 1-fold covering is called a covering. The problem of splitting multiple coverings into several coverings was motivated by classical density est ...
A system of sets forms an m-fold covering of a set X if every point of X belongs to at least m of its members. A 1-fold covering is called a covering. The problem of splitting multiple coverings into several coverings was motivated by classical density est ...