In applied statistics, total least squares is a type of errors-in-variables regression, a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models. The total least squares approximation of the data is generically equivalent to the best, in the Frobenius norm, low-rank approximation of the data matrix. In the least squares method of data modeling, the objective function, S, is minimized, where r is the vector of residuals and W is a weighting matrix. In linear least squares the model contains equations which are linear in the parameters appearing in the parameter vector , so the residuals are given by There are m observations in y and n parameters in β with m>n. X is a m×n matrix whose elements are either constants or functions of the independent variables, x. The weight matrix W is, ideally, the inverse of the variance-covariance matrix of the observations y. The independent variables are assumed to be error-free. The parameter estimates are found by setting the gradient equations to zero, which results in the normal equations Now, suppose that both x and y are observed subject to error, with variance-covariance matrices and respectively. In this case the objective function can be written as where and are the residuals in x and y respectively. Clearly these residuals cannot be independent of each other, but they must be constrained by some kind of relationship. Writing the model function as , the constraints are expressed by m condition equations. Thus, the problem is to minimize the objective function subject to the m constraints. It is solved by the use of Lagrange multipliers. After some algebraic manipulations, the result is obtained. or alternatively where M is the variance-covariance matrix relative to both independent and dependent variables. When the data errors are uncorrelated, all matrices M and W are diagonal.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
MATH-408: Regression methods
General graduate course on regression methods
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
EE-566: Adaptation and learning
In this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
Afficher plus