Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les bases de la régression linéaire, de l'interprétation des coefficients, des hypothèses, des transformations et de la «différence des différences» pour l'analyse causale.
Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Explore les fondamentaux de la régression linéaire, la formation des modèles, l'évaluation et les mesures du rendement, en soulignant l'importance de la R2, du MSE et de l'EAM.
Couvre les bases de régression linéaire, en se concentrant sur la minimisation des erreurs en utilisant le principe des moindres carrés et comprend une table ANOVA et un exemple pratique dans R.
Explore l'estimation, la prévision et la comparaison de modèles dans l'analyse de séries chronologiques à l'aide d'exemples de données réelles pour motiver l'étude.