Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les apprenants faibles dans la stimulation, l'algorithme AdaBoost, les inconvénients, les apprenants faibles simples, les variantes de stimulation et les ondelettes Viola-Jones Haar-Like.
Couvre les forêts de décision, la formation, les apprenants faibles, l'entropie, la stimulation, l'estimation de pose 3D et les applications pratiques.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Explique l'algorithme Adaboost pour construire des classificateurs forts à partir de faibles, en mettant l'accent sur l'amélioration des méthodes et la détection des visages.
Explore les arbres de décision pour la classification, l'entropie, le gain d'information, l'encodage à chaud, l'optimisation de l'hyperparamètre et les forêts aléatoires.
Explore le picking automatisé des barres de renforcement dans les données radar pénétrantes au sol à l'aide de techniques d'apprentissage automatique et de traitement du signal.
Couvre les marginaux articulaires et la causalité de Granger dans la théorie des probabilités, en expliquant leurs implications dans la prédiction des résultats.