Concept

Undefined (mathematics)

Concepts associés (6)
Algèbre
L'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Forme indéterminée
En mathématiques, une forme indéterminée est une opération apparaissant lors d'un calcul d'une limite d'une suite ou d'une fonction sur laquelle on ne peut conclure en toute généralité et qui nécessite une étude au cas par cas. Par exemple, on ne peut conclure de manière générale sur la limite de la somme de deux suites dont l'une tend vers et l'autre vers . Selon les cas, cette limite peut être nulle, égale à un réel non nul, être égale à ou ou bien même ne pas exister.
Division par zéro
La division par zéro consiste à chercher le résultat qu'on obtiendrait en prenant zéro comme diviseur. Ainsi, une division par zéro s'écrirait x/0, où x serait le dividende (ou numérateur). Dans les définitions usuelles de la multiplication, cette opération n'a pas de sens : elle contredit notamment la définition de la multiplication en tant que seconde loi de composition d'un corps, car zéro (l'élément neutre de l'addition) est un élément absorbant pour la multiplication. La division par zéro donne l'infini.
Singularité (mathématiques)
En mathématiques, une singularité est en général un point, une valeur ou un cas dans lequel un certain objet mathématique n'est pas bien défini ou bien subit une transition. Ce terme peut donc avoir des significations très différentes en fonction du contexte. Par exemple, dans l'analyse élémentaire, on dit que . En théorie des singularités, le terme prend un sens différent. On dit, par exemple, En algèbre linéaire, une matrice carrée est dite singulière si elle n'est pas inversible.
Droite réelle achevée
En mathématiques, la droite réelle achevée désigne l'ensemble ordonné constitué des nombres réels auxquels sont adjoints deux éléments supplémentaires : un plus grand élément, noté +∞ et un plus petit élément, noté –∞. Elle est notée [–∞, +∞], R ∪ {–∞, +∞} ou (notation toutefois ambiguë, car la barre signifie généralement "complémentaire" en théorie des ensembles, ou "adhérence" en topologie). Cet ensemble est très utile en analyse, notamment pour généraliser les formules et théorèmes sur les limites sans avoir à effectuer une disjonction des cas, et dans certaines théories de l'intégration.
Zéro
Zéro est un chiffre et un nombre. Son nom a été emprunté en 1485 à l’italien zero, contraction de zefiro, issu du latin médiéval zephirum, qui représente une transcription de l’arabe ṣĭfr (صفر), le vide (qui en français a également donné chiffre). Le zéro est noté sous forme d’une figure fermée simple : 0. En tant que chiffre, il est utilisé pour et marquer une position vide dans l’écriture des nombres en notation positionnelle. En tant que nombre, zéro est un objet mathématique permettant d’exprimer une absence comme une quantité nulle : c'est le nombre d'éléments de l’ensemble vide.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.