Concepts associés (58)
Définition par récurrence
vignette|4 étapes de la construction d'un flocon de Koch. Comme beaucoup d'autres fractales, cette courbe est définie par récurrence. En mathématiques, on parle de définition par récurrence pour une suite, c'est-à-dire une fonction définie sur les entiers positifs et à valeurs dans un ensemble donné. Une fonction est définie par récurrence quand, pour définir la valeur de la fonction en un entier donné, on utilise les valeurs de cette même fonction pour des entiers strictement inférieurs.
Branche principale (mathématiques)
En analyse complexe, la branche principale est une détermination particulière d'une fonction analytique complexe multiforme, telle que la fonction racine n-ième ou le logarithme complexe. Cette détermination arbitraire est souvent choisie de façon à coïncider avec une fonction de la variable réelle, c'est-à-dire que la restriction de la branche principale à R prend des valeurs réelles. Une façon de visualiser la branche principale d'une fonction est de considérer ce qui se passe avec la réciproque de la fonction exponentielle complexe.
Nombre primaire
En mathématiques, plus précisément en arithmétique, un nombre primaire, également appelé puissance première, est une puissance à exposant entier positif non nul d'un nombre premier. Par exemple : 5=51, 9=32 et 16=24 sont des nombres primaires, alors que 6=2×3, 15=3×5 et 36=62=22×32 n'en sont pas. Les vingt plus petits nombres primaires sont : 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41. Les puissances premières sont tous les nombres entiers positifs qui ne sont divisibles que par un seul nombre premier.
Robert Recorde
Robert Recorde est un mathématicien et médecin gallois né à Tenby vers 1512, et mort à Londres mi-. Il a introduit pour la première fois dans un livre imprimé en Angleterre le signe égal (=) pour la résolution des équations dans le chapitre "The rule of equation commonly called Algebers rule", du livre "The Whetstone of Witte, which is the second part of Arithmetike, containing the Extraction of Rootes, the Cossike Practice, with the Rules of Equation, and the Woorkes of Surde Numbers" (London, 1557).
Fourth power
In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n4 = n × n × n × n Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n4 as n “Tesseracted”, “Hypercubed”, “Zenzizenzic”, “Biquadrate” or “Supercubed” instead of “to the power of 4”.
Caret
Caret is the name used familiarly for the character , (the circumflex and a circumflex accent) provided on most QWERTY keyboards by typing . The symbol has a variety of uses in programming and mathematics. The name "caret" arose from its visual similarity to the original proofreader's caret, a mark used in proofreading to indicate where a punctuation mark, word, or phrase should be inserted into a document. The formal ASCII standard (X3.64.1977) calls it a "circumflex".
Like terms
In mathematics, like terms are summands in a sum that differ only by a numerical factor. Like terms can be regrouped by adding their coefficients. Typically, in a polynomial expression, like terms are those that contain the same variables to the same powers, possibly with different coefficients. More generally, when some variable are considered as parameters, like terms are defined similarly, but "numerical factors" must be replaced by "factors depending only on the parameters".
P-adic valuation
In number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted . Equivalently, is the exponent to which appears in the prime factorization of . The p-adic valuation is a valuation and gives rise to an analogue of the usual absolute value. Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers , the completion of the rational numbers with respect to the -adic absolute value results in the p-adic numbers .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.