Mécanique spatialeLa mécanique spatiale, aussi dénommée astrodynamique, est, dans le domaine de l'astronomie et de l'astronautique, la science qui a trait à l'étude des mouvements. C'est une branche particulière de la mécanique céleste qui a notamment pour but de prévoir les trajectoires des objets spatiaux tels que les fusées ou les engins spatiaux y compris les manœuvres orbitales, les changements de plan d'orbite et les transferts interplanétaires.
Orbital state vectorsIn astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position () and velocity () that together with their time (epoch) () uniquely determine the trajectory of the orbiting body in space. State vectors are defined with respect to some frame of reference, usually but not always an inertial reference frame.
Orbite circulaireA circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. In this case, not only the distance, but also the speed, angular speed, potential and kinetic energy are constant. There is no periapsis or apoapsis. This orbit has no radial version. Listed below is a circular orbit in astrodynamics or celestial mechanics under standard assumptions. Here the centripetal force is the gravitational force, and the axis mentioned above is the line through the center of the central mass perpendicular to the orbital plane.
Paramètre gravitationnel standardLe paramètre gravitationnel standard d'un corps, noté μ (mu), est le produit de la constante gravitationnelle G par la masse M de ce corps : Quand M désigne la masse de la Terre ou du Soleil, μ s'appelle la constante gravitationnelle géocentrique ou la constante gravitationnelle héliocentrique. Le paramètre gravitationnel standard s'exprime en kilomètres cubes par seconde carrée ( ou ). Pour la Terre, . En astrophysique, le paramètre μ fournit une simplification pratique des différentes formules liées à la gravitation.
Delta-vDelta-v, noté , est en astronautique une mesure de changement (Delta ou Δ) de vitesse () d'un engin spatial (satellite artificiel, véhicule spatial, sonde spatiale, lanceur) ; il est exprimé en distance parcourue par unité de temps (mètre par seconde). Le Delta-v est calculé en soustrayant deux vitesses : où représente la vitesse avant le changement et la vitesse après le changement. Le Delta-v est une quantité scalaire : les changements de direction sans changement de vitesse accroissent sa valeur.
Radial trajectoryIn astrodynamics and celestial mechanics a radial trajectory is a Kepler orbit with zero angular momentum. Two objects in a radial trajectory move directly towards or away from each other in a straight line. There are three types of radial trajectories (orbits). Radial elliptic trajectory: an orbit corresponding to the part of a degenerate ellipse from the moment the bodies touch each other and move away from each other until they touch each other again. The relative speed of the two objects is less than the escape velocity.
Équation d'orbitethumb|Orbite de la comète 3D/Biela. En mécanique spatiale, l'équation d'orbite définit la trajectoire du corps en orbite autour du corps central , sans spécifier la position en fonction du temps. Selon les hypothèses classiques, un corps se déplaçant sous l'influence d'une force, dirigée vers un corps central, d'une magnitude inversement proportionnelle au carré de la distance (cas de la gravité), a une orbite ayant une section conique (c'est-à-dire orbite circulaire, orbite elliptique, parabolique, hyperbolique ou trajectoire radiale) avec le corps central situé en l'un des deux foyers, selon la première loi de Kepler.