Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.
Couvre la méthode des gradients conjugués pour résoudre les systèmes linéaires itérativement avec la convergence quadratique et souligne l'importance de l'indépendance linéaire entre les directions conjuguées.
Explore les méthodes itératives pour les équations linéaires, y compris les méthodes Jacobi et Gauss-Seidel, les critères de convergence et la méthode du gradient conjugué.