Couvre la méthode Conjugate Gradient pour résoudre des systèmes linéaires sans préconditionnement, en explorant les implémentations de calcul parallèle et les prédictions de performances.
Couvre les méthodes itératives pour résoudre des équations linéaires et analyser la convergence, y compris le contrôle des erreurs et les matrices définies positives.
Fournit un aperçu des méthodes de gradient conjugué, y compris le préconditionnement, le gradient conjugué non linéaire et la décomposition des valeurs singulières.
Introduit des méthodes itératives pour les équations linéaires, les critères de convergence, le gradient des formes quadratiques et les champs de force classiques dans les systèmes atomistiques complexes.
Couvre le concept de descente de gradient dans les cas scalaires, en se concentrant sur la recherche du minimum d'une fonction en se déplaçant itérativement dans la direction du gradient négatif.
Explore les gradients conjugués tronqués pour résoudre le sous-problème de la région de confiance dans l'optimisation sur les collecteurs efficacement.