Introduit les bases de l'algèbre linéaire, du calcul et de l'optimisation dans les espaces euclidien, en mettant l'accent sur la puissance de l'optimisation en tant qu'outil de modélisation.
Couvre la définition du produit scalaire, des propriétés, des exemples et des applications dans les espaces euclidiens, y compris l'inégalité Cauchy-Schwartz.
Couvre les opérations et les constructions fondamentales en géométrie euclidienne, en se concentrant sur les interprétations algébriques et les constructions de règle et de compas.
Explore l'orthogonalité, les normes vectorielles et les sous-espaces dans l'espace euclidien, y compris la détermination des compléments orthogonaux et des propriétés des sous-espaces et des matrices.