Quantifier la performance: mauvaise classification et F-Measure
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le surajustement, la validation croisée et la régularisation dans l'apprentissage automatique, en mettant l'accent sur la complexité du modèle et l'importance de la force de régularisation.
Plongez dans l'importance des fonctionnalités, de l'évolution des modèles, des défis d'étiquetage et de la sélection des modèles dans l'apprentissage automatique.
Explore l'évaluation des modèles d'apprentissage automatique à l'aide de mesures de sortie, de bootstrap et de performance comme le rappel et la précision.
Introduit les bases de l'apprentissage automatique, couvrant la classification supervisée, les limites de décision et l'ajustement de la courbe polynomiale.
Introduit des algorithmes ML non linéaires, couvrant le voisin le plus proche, k-NN, ajustement des courbes polynômes, complexité du modèle, surajustement, et régularisation.
Discute des méthodes du noyau, en se concentrant sur les surajustements, la sélection des modèles et les fonctions du noyau dans l'apprentissage automatique.
Explore les choix discrets et l'apprentissage automatique comme méthodes complémentaires, en discutant de l'apprentissage supervisé, des avantages du modèle, des pièges, des biais d'agrégation, de la classification probabiliste et des données de panel.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.