Explore d'autres variances spécifiques dans les modèles de mélange et discute des questions d'identification et des comparaisons de modèles à l'aide de 500 dessins.
Couvre l'estimation conditionnelle maximale de la probabilité, la contribution à la probabilité et l'application du modèle de VEM dans les échantillons fondés sur le choix.
Introduit l'estimation bayésienne, qui couvre l'inférence classique par rapport à l'inférence bayésienne, les antécédents conjugués, les méthodes MCMC et des exemples pratiques comme l'estimation de la température et la modélisation de choix.
Couvre la maximisation des revenus dans les modèles de choix, les stratégies de tarification, la concurrence sur le marché, et un exemple de modèle binaire logit.
Explore l'interprétation des réponses binaires, les fonctions de liaison, la régression logistique et la sélection des modèles à l'aide de déviances et de critères d'information.
Explore la régression logistique pour les variables de réponse binaire, couvrant des sujets tels que l'interprétation du rapport de cotes et l'ajustement du modèle.