Explore le pseudo-aléatoire dans les graphes en utilisant des valeurs propres et des polynômes, en soulignant l'importance des racines groupées et des entrelaceurs communs.
Couvre la preuve du théorème ARV de Bourgain, en se concentrant sur lensemble fini de points dans un espace semi-métrique et lapplication de lalgorithme ARV pour trouver la coupe la plus clairsemée dans un graphique.
Explore les valeurs propres et les vecteurs propres dans l'algèbre linéaire 3D, couvrant les polynômes caractéristiques, la stabilité sous les transformations, et les racines réelles.
Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
Explore la diagonalisation des matrices à travers des valeurs propres et des vecteurs propres, en soulignant l'importance des bases et des sous-espaces.
Explore la théorie des graphes, les matrices stochastiques, les algorithmes de consensus et les propriétés spectrales dans les systèmes de contrôle en réseau.