Couvre les bases de la programmation non linéaire et ses applications dans le contrôle optimal, en explorant des techniques, des exemples, des définitions d'optimalité et les conditions nécessaires.
Explore l'optimisation dans la modélisation des systèmes énergétiques, couvrant les variables de décision, les fonctions objectives et les différentes stratégies avec leurs avantages et leurs inconvénients.
Explore les problèmes d'optimisation, les régions réalisables et les fonctions objectives en mettant l'accent sur les multiplicateurs de Lagrange et la convexité.
Explore la dualité de programmation linéaire, couvrant la dualité faible, la dualité forte, l'interprétation des multiplicateurs de Lagrange et les contraintes d'optimisation.