Discute de la probabilité que les trains à pics soient basés sur des modèles générateurs et des calculs de log-probabilité à partir des données observées.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.
Explore linférence de vraisemblance maximale, comparant les modèles basés sur les ratios de vraisemblance et démontrant avec un exemple de pièce de monnaie.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Couvre le test du rapport de vraisemblance dans les modèles de choix, en comparant des modèles illimités et restreints par l'analyse comparative et l'essai de différentes spécifications du modèle.
Explore l'estimation du maximum de vraisemblance pour la densité et le modèle Bernoulli, y compris la fiabilité des tests et le dépistage des maladies.