Règles de décision : Maximum a Posteriori Decision
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'estimation de la probabilité maximale et les tests d'hypothèses multivariées, y compris les défis et les stratégies pour tester plusieurs hypothèses.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.
Introduit une estimation de vraisemblance maximale en économétrie, couvrant les principes, les propriétés, les applications et les tests de spécification.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.
Discute de l'inférence bayésienne pour la moyenne d'une distribution gaussienne avec variance connue, couvrant la moyenne postérieure, la variance et l'estimateur MAP.
Explore les algorithmes d'apprentissage génératif, les règles de décision et les propriétés de distribution gaussienne dans l'apprentissage automatique.