Explore la théorie du contrôle quadratique optimal linéaire, couvrant les problèmes FH-LQ et IH-LQ et l'importance de l'observabilité dans les systèmes de contrôle.
Explore le contrôle de l'agrégation protéique par des stratégies optimales, des inhibiteurs et une régulation spatiale à l'aide de compartiments liquides, éclairant les interventions médicamenteuses et la dynamique des agrégats.
Couvre les principes fondamentaux de la théorie du contrôle optimal, en se concentrant sur la définition des OCP, l'existence de solutions, les critères de performance, les contraintes physiques et le principe d'optimalité.
Explore la stabilité des équations différentielles ordinaires, en se concentrant sur la dépendance des solutions, les données critiques, la linéarisation et le contrôle des systèmes non linéaires.
Explore les processus stochastiques contrôlés, en se concentrant sur l'analyse, le comportement et l'optimisation, en utilisant la programmation dynamique pour résoudre les problèmes du monde réel.