Riemannian Geometry: Robot Motion Learning and Control
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les défis et les solutions pour que les robots travaillent en toute sécurité avec les humains, en mettant l'accent sur l'adaptabilité et la prévisibilité.
Explore les approches fondées sur les données pour améliorer la conception des robots, en mettant l'accent sur la conformité, les matériaux souples et les interactions complexes.
Explore l'état de la recherche robotique, couvrant les défis interdisciplinaires, les technologies de capteurs et les architectures de collaboration homme-robot.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Explore le défi de contrôle dans les systèmes robotiques souples et l'utilisation de modèles simplifiés avec théorie de contrôle non linéaire pour l'exécution dynamique des tâches.
Explore l'amélioration du corps robotique avec des membres supplémentaires et les défis de la neuro-ingénierie dans le développement de doigts robotiques supplémentaires pour la restauration et l'augmentation.