Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
S'insère dans le compromis entre la flexibilité du modèle et la variation des biais dans la décomposition des erreurs, la régression polynomiale, le KNN, et la malédiction de la dimensionnalité.
Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore l'apprentissage supervisé en matière de tarification des actifs, en mettant l'accent sur les défis de la prévision du rendement des actions et l'évaluation des modèles.
Introduit les bases de l'apprentissage automatique supervisé, couvrant les types, les techniques, le compromis biais-variance et l'évaluation du modèle.
Explore la classification des images en utilisant des arbres de décision et des forêts aléatoires pour réduire la variance et améliorer la robustesse du modèle.