Couvre la minimisation empirique des risques, l'apprentissage statistique et des exemples de prédiction du cancer, de prix des maisons et de génération d'images.
Couvre les techniques d'apprentissage supervisées et non supervisées dans l'apprentissage automatique, en mettant en évidence leurs applications dans la finance et l'analyse environnementale.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Déplacez-vous dans l'intersection de la physique et des données dans les modèles d'apprentissage automatique, couvrant des sujets tels que les champs d'expansion des grappes atomiques et l'apprentissage non supervisé.
Couvre l'apprentissage supervisé en mettant l'accent sur la régression linéaire, y compris des sujets comme la classification numérique, la détection des pourriels et la prédiction de la vitesse du vent.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Introduit les bases de l'apprentissage automatique, couvrant l'apprentissage supervisé et non supervisé, la régression linéaire et la compréhension des données.
Présente la structure du cours et les concepts fondamentaux de l'apprentissage automatique, y compris l'apprentissage supervisé et la régression linéaire.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.