Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les règles d'association dans l'extraction de données, y compris les mesures, les techniques et les algorithmes pour l'extraction efficace des règles.
Couvre les projets d'histoire numérique, les relations sociales dans la recherche, les défis de prétraitement des données et les outils d'analyse de réseau.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Explore l'extraction de texte de données à longue queue dans les neurosciences et la connectivité cérébrale, y compris la reconnaissance d'entités nommées, l'extraction de la concentration de protéines et la comparaison des matrices de connectivité.
Explore les niveaux d'abstraction des données, de construction de modèles, d'utilisation et de représentation, et l'utilité des systèmes d'information pour la prise de décision.
Explore l'hydraulique fluviale, la modélisation et l'étalonnage en utilisant une approche semi-distribuée pour des prévisions précises et la gestion des ressources en eau.
Déplacez-vous dans le Big Data en neurosciences, en analysant les grands ensembles de données et en abordant les défis de l'organisation, de la normalisation, de l'intégration et de la visualisation des données.