Défis posés par l'apprentissage des modèles probabilistes, couvrant la complexité des calculs, la reconstruction des données et les lacunes statistiques.
Introduit des méthodes de pointe dans l'optimisation et la simulation, couvrant des sujets tels que l'analyse statistique, la réduction de la variance et les projets de simulation.
S'insère dans le compromis entre la complexité du modèle et le risque, les limites de généralisation, et les dangers d'un ajustement excessif des classes de fonctions complexes.
Explorer la résolution Connect Four en utilisant la théorie du jeu et l'optimisation des algorithmes, en comparant minimax, taille alpha-bêta, et recherche d'arbre Monte-Carlo.