Couvre l'extraction de phrases clés, une méthode pour extraire des phrases importantes du texte pour la synthèse, l'indexation et la recherche de documents.
Introduit le cours sur les systèmes d'information, couvrant sa structure, ses objectifs et ses concepts fondamentaux essentiels à la compréhension de la gestion des données et de la prise de décision.
Présente des modèles de langage classiques, leurs applications et des concepts fondamentaux tels que la modélisation et les mesures d'évaluation basées sur le nombre.
Couvre la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés.
Explore la recherche de documents, la classification, l'analyse des sentiments, les matrices TF-IDF, les méthodes de voisinage les plus proches, la factorisation matricielle, la régularisation, LDA, les vecteurs de mots contextualisés et BERT.
Couvre la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés tels que BERT.
Introduit le traitement du langage naturel (NLP) et ses applications, couvrant la tokenisation, l'apprentissage automatique, l'analyse du sentiment et les applications NLP suisses.