Couvre la preuve du théorème ARV de Bourgain, en se concentrant sur lensemble fini de points dans un espace semi-métrique et lapplication de lalgorithme ARV pour trouver la coupe la plus clairsemée dans un graphique.
Couvre l'algorithme de Leighton-Rao pour trouver la coupe la plus clairsemée dans un graphique, en se concentrant sur ses étapes et ses fondements théoriques.
Couvre les tests d'identité polynomiale à l'aide d'oracles et d'évaluations ponctuelles aléatoires, avec des applications dans la théorie des graphes et les aspects algorithmiques.
Explore la théorie du clustering spectral, la décomposition des valeurs propres, la matrice laplacienne et les applications pratiques dans l'identification des clusters.