Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Explore la méthodologie MODNet pour les prévisions des biens matériels, en mettant l'accent sur la sélection des caractéristiques et l'apprentissage supervisé.
Couvre les bases des réseaux neuronaux, des fonctions d'activation, de la formation, du traitement d'image, des CNN, de la régularisation et des méthodes de réduction de dimensionnalité.
Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.
Introduit des concepts d'apprentissage automatique appliqués tels que la collecte de données, l'ingénierie des caractéristiques, la sélection des modèles et les mesures d'évaluation du rendement.
Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.
Couvre PCA et LDA pour la réduction de dimensionnalité, expliquant la maximisation de la variance, les problèmes de vecteurs propres et les avantages de Kernel PCA pour les données non linéaires.
Couvre les concepts clés de l'analyse des composantes principales (APC) et ses applications pratiques dans la réduction de dimensionnalité des données et l'extraction des caractéristiques.