Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Explore les tests statistiques pour l'indépendance et l'homogénéité, y compris les tests chi-carré et le test exact de Fisher, avec des exemples pratiques et des applications.
Couvre les intervalles de confiance, les tests d'hypothèse, les erreurs standard, les modèles statistiques, la probabilité, l'inférence bayésienne, la courbe ROC, la statistique Pearson, la bonté des tests d'ajustement et la puissance des tests.
Explorer l'analyse de la pollution atmosphérique à l'aide de données sur le vent, de distributions de probabilités et de modèles de trajectoire pour l'évaluation de la qualité de l'air.
Explore les processus cognitifs dans l'analyse des données, en mettant l'accent sur la pensée visuelle et la simplification pour extraire des informations à partir de données.