Explore la perspective évolutive de la surprise, de la curiosité et de la récompense, en mettant l'accent sur le rôle des signaux de récompense primaires et secondaires.
Explore l'utilisation d'extensions visuelles, telles que la réalité virtuelle et la réalité augmentée, pour améliorer l'efficacité et la communication sur le lieu de travail.
Explore la classification des données textuelles, en se concentrant sur des méthodes telles que les bayes naïques et les techniques de réduction de la dimensionnalité telles que l'analyse des composantes principales.
Présente la structure du cours et les concepts fondamentaux de l'apprentissage automatique, y compris l'apprentissage supervisé et la régression linéaire.
Couvre l'analyse des données sur la pollution atmosphérique, en se concentrant sur les bases de R, en visualisant des séries chronologiques et en créant des résumés des concentrations de polluants.
Explore les modèles thématiques, les modèles de mélange gaussien, la répartition des dirichlets latents et l'inférence variationnelle dans la compréhension des structures latentes à l'intérieur des données.
Explore le contrôle du comportement chez les animaux et les robots, couvrant les perspectives historiques, l'activation des neurones, le modèle de Drosophila, les techniques avancées et l'organisation de mini-projets.
Déplacez-vous dans les courbes de repérage et d'apprentissage des connaissances bayésiennes, explorant la prédiction des connaissances des élèves au fil du temps et l'importance d'une mesure précise du rendement.