Kernel PCA : Réduction de la dimensionnalité non linéaire
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Couvre les concepts clés de l'APC, y compris la réduction de la dimensionnalité des données et des fonctions d'extraction, avec des exercices pratiques.
Couvre les concepts clés de l'analyse des composantes principales (APC) et ses applications pratiques dans la réduction de dimensionnalité des données et l'extraction des caractéristiques.
Couvre un examen des concepts d'apprentissage automatique, y compris l'apprentissage supervisé, la classification vs régression, les modèles linéaires, les fonctions du noyau, les machines vectorielles de soutien, la réduction de la dimensionnalité, les modèles génératifs profonds et la validation croisée.
Explore la théorie du clustering spectral, la décomposition des valeurs propres, la matrice laplacienne et les applications pratiques dans l'identification des clusters.