Couvre les bases de la régression linéaire, y compris l'ingénierie des caractéristiques, l'apprentissage supervisé ou non supervisé, et minimise la fonction de coût.
Introduit les bases de l'apprentissage automatique, couvrant l'apprentissage supervisé et non supervisé, la régression linéaire et la compréhension des données.
Couvre la régression linéaire et pondérée, les paramètres optimaux, les solutions locales, l'application SVR et la sensibilité des techniques de régression.