Cette séance de cours couvre la théorie des probabilités de base, y compris l'espace d'échantillonnage, les événements et les distributions de probabilité. Il explique également la probabilité conditionnelle, l'indépendance, l'indépendance par paire et mutuelle, les procès Bernoulli et le théorème de Bayes.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ut mollit dolore quis ullamco reprehenderit ut est sint elit veniam quis sunt. Eu est nulla qui cupidatat exercitation aliqua eiusmod et enim cillum mollit ad. Culpa reprehenderit laboris aliqua pariatur sint commodo ex.
Culpa quis eu nulla sit excepteur commodo consectetur. Aute veniam pariatur esse proident laboris cupidatat aliquip proident. Ut Lorem fugiat veniam aliquip et minim duis proident laboris sit aliqua.
Couvre les concepts fondamentaux de probabilité et de statistiques, y compris les résultats intéressants, le modèle standard, le traitement de l'image, les espaces de probabilité et les tests statistiques.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Présente des concepts clés en probabilité et en statistiques, couvrant des expériences aléatoires, des événements, des intersections, des syndicats et plus encore.