Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Couvertures Modèles linéaires généralisés, probabilité, déviance, fonctions de liaison, méthodes d'échantillonnage, régression de Poisson, surdispersion et modèles de régression alternatifs.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Couvre la théorie derrière l'estimation maximale de la vraisemblance, en discutant des propriétés et des applications dans le choix binaire et des modèles multiréponses ordonnées.
Couvre les probabilités, les variables aléatoires, les attentes, les GLM, les tests d'hypothèse et les statistiques bayésiennes avec des exemples pratiques.