Explore l'ajustement de la courbe polynomiale, les fonctions du noyau et les techniques de régularisation, en soulignant l'importance de la complexité du modèle et du surajustement.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Explore Ridge et Lasso Regression pour la régularisation dans les modèles d'apprentissage automatique, en mettant l'accent sur le réglage hyperparamétrique et la visualisation des coefficients des paramètres.
Aborde l'ajustement excessif dans l'apprentissage supervisé par le biais d'études de cas de régression polynomiale et de techniques de sélection de modèles.
Présente la régularisation Lasso et son application à l'ensemble de données MNIST, en mettant l'accent sur la sélection des fonctionnalités et les exercices pratiques sur la mise en œuvre de la descente en gradient.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, en soulignant l'importance de la complexité du modèle et des différentes méthodes de validation croisée.
Couvre la régression polynôme, la descente en gradient, le surajustement, le sous-ajustement, la régularisation et la mise à l'échelle des caractéristiques dans les algorithmes d'optimisation.